Furstenberg boundary of a discrete quantum

group



In this talk: all (quantum) groups are discrete, all C*-algebras are
unital, and all topological spaces are compact Hausdorff.

Recent applications of boundary actions in C*-algebras:
1. Amenable embeddings of exact C*-algebras
2. C*-simplicity

3. Description & uniqueness of traces



1. Amenable embeddings of exact C*-algebras

Recall: a C*-algebra A is amenable if there are u.c.p. maps
@i A— My, ;i : M,, — A such that || o ¢;(a) — a|| — 0 for all
acA

A C*-algebra A is exact if there is B D A and u.c.p. maps
@i A— M, ;i : M, — B such that |[1); o ¢;(a) — a|| — O for all
acA

Obviously: every C*-subalgebra of an amenable C*-algebra is exact.
The converse is also true!

Problem: given an exact C*-algebra A, find concrete / canonical /
meaningful embeddings A < B where B is amenable.



1. Amenable embeddings of exact C*-algebras

Ozawa's conjecture: given exact C*-algebra A, 3 nuclear C*-algebra B
s.t. AC B C I(A), where [(A) is the injective envelope of A, i.e. the
minimal injective C*-algebra that contains A.

Theorem (Ozawa 07): True for A= CX4(Fn).
(with B=F, x, C(9F,))

Theorem (K.-Kennedy 17): True for exact A = C4(I).
(with B =T x, C(9T))

(Ozawa's conjecture remains open in general.)



2. C*-simplicity

Problem: For which groups I', C (") is simple? (equivalently, any rep
weakly contained in A\ is weakly equivalent to \).

Theorem (Powers 75): C* ,(F,) is simple.

(many results ...)

Theorem (K.-Kennedy 17):
Cr () is simple iff T ~ Ofl is free.



3. Description & uniqueness of traces

Problem: Describe traces on C,(I); in particular, for which groups T,
* 4(T) has a unique trace?

Theorem (Breuillard K.-Kennedy-Ozawa 17):

Every trace on (T) is supported on the kernel of ' ~ Ogr; in

red
particular, C* ,(I) has a unique trace iff [ ~ Of[ is faithful.

(Furman 03): ker(I' ~ 9gTl) is the amenable radical of T.



Goal: extend the notion of boundary actions to the quantum case,
apply it to similar problems for discrete quantum groups...



Definition (Furstenberg):
An action ' ~ X is a boundary action if co(l'y)Weak

every v € Prob(X);
equivalently, the Poisson transform P, : C(X) — ¢°°(I) is isometric for
every v € Prob(X), where P, (f)(7) := [, f(vx) dv(x).

" — Prob(X) for

Proposition (Furstenberg):
There is a (unique) maximal -boundary, which we call the Furstenberg
boundary and denote by Ofl.

Theorem (K.-Kennedy 17):

C(0eT) = Ir(C) as -C*-algebras, where I-(C) is the I-injective
envelope of C, i.e. the (unique) minimal injective object in the
category of -C*-algebras (existence of which was proved by Hamana).



Below, is a discrete quantum group, its coproduct is denoted by A.
We will use standard notations.

Definition: A (left) action ~ Ais an injective & € Mor(A, o( ) ® A)
such that

(d®a)oa=(A®id)oa;

(co( ) ® 1) (A) spans a dense subspace of ¢o( ) ® A.

In this case we say A is a -C*-algebra.

The convolution actions are defined naturally ...



Definition: Let av € Mor(A, co( ) ® A) be an action of on A. We
define the co-kernel of o to be the von Neumann algebra

N, == VN{(id®v)a(a) : ve A",ac A} C ().
We say that the action « is faithful if N, = ¢>°( ).
A linear map ¢ : A — B between -C*-algebrasis -equivariant if
Slaxp)=d(a)*p (a€ Aand € AY).

The (reduced) crossed product X, A is the C*-algebra generated by
(Gea( )@ 1) a(A) inside M(K(¢2( ) ® A).



Definition: A -C*-algebra Ais a -boundary the set
{u*v:pet( )is astate} is weak* dense in the state space of A,
for every state v € A*.

Proposition: For a -C*-algebra A the following are equivalent:
Ais a -boundary;
every ucp -equivariant from A into £°°( ) is completely
isometric;
every ucp -equivariant map from A into any -C*-algebra B is
completely isometric.



Theorem: Every discrete quantum group  admits a (unique) maximal
-boundary C(9r ), in the sense that for any -boundary A there is a
completely isometric ucp -equivariant map A — C(9¢ ).

We call C(0f ) the (algebra of continuous functions on the)
Furstenberg boundary of




Quick remarks on the construction:

Similarly to Hamana's construction, we obtain a (unique) minimal
injective object in the category of £1( )-C*-algebras. We need to work
a bit to show that the /*( )-module action on this injective envelop
comes from a genuine -action.

Immediate from definition:
Proposition: is amenable iff C(0f ) is trivial.



Proposition: Every discrete quantum group  admits the largest normal
amenable quantum subgroup R( ), that we call the amenable radical
of

Proposition: If the co-kernel Ng of the action ~ C(9r ) is of
quotient type, then Np = £°°( /R( )).

Definition: A -invariant vN subalgebra M C ¢>°( ) is
relatively amenable if 3 ucp -equivariant map W : /*°( ) — M.

Theorem: N is the unique minimal relatively amenable Baaj-Vaes
subalgebra of ¢°°( ). It is contained in every other relatively amenable
Baaj-Vaes subalgebra of ¢>°( ).



Theorem: Suppose has a faithful boundary action ~ A
(equivalently, ~ C(9r ) is faithful). If is unimodular then the
Haar state is the unique trace on C* ( ). If is not unimodular, then
it does not admit any -invariant functional, nor any KMS-state for
the scaling automorphism group.

A partial converse:

Proposition: If  be is unimodular with the unique trace property then
the amenable radical of s trivial.



Theorem: Let be a discrete quantum group. Then the following are
equivalent:

Crq( ) is simple;
X, A is simple for every -boundary A;
X, A is simple for some -boundary A;

X, C(Op ) is simple.

Proposition: If is C*-simple, then has trivial amenable radical.



Theorem: Let A be a -C*-algebra. Then Ais a -boundary iff

Xr AG /( r*od( ))

In particular, if x, Ais amenable, then C’ ( ) is exact and Ozawa's
conjecture holds in this case.



Classically, concrete examples of boundary actions are often obtained
using hyperbolic-type elements or nice boundary convergence
properties. Of course such orbital behavior are not quantum-friendly!!

Theorem: Let  be a discrete quantum group and let 1 € /() be a
state. Suppose A is a unital -C*-algebra that admits a unique
p-stationary state v, and such that the map

A3 a— (dev)a(a) € £°°( )
is completely isometric. Then A is a -boundary.

Definition: A state w € A* is p-stationary if y*w = w.



Let = FOg be the free orthogonal discrete quantum group with
Q € My(C) such that Q@ = +/y, N > 3.

The “Gromov boundary” B, of was defined by Vaes and Vergnioux,
it is a unital -C*-algebra that shares many properties of the
(continuous functions on the) Gromov boundary of the free group.

Vaes—Vergnioux proved that B., admits a state v, such that
Ty, (Bs)” is canonically identified with the Poisson boundary of



Theorem: The Poisson state v, is the unique qtry, (c)-stationary state
on Bs.

Corollary: We have:
The Gromov boundary B, is a -boundary.

Ozawa's conjecture holds for C,( );  (Vaes-Vergnioux proved
that X, B is amenable).

The crossed product X, B is simple, provided that

1Q|I® < 2Tr(QQ*);  (Vaes-Vergnioux proved that Ciy( ) is
simple in this case).



Theorem: The action ~ By, is faithful.

Corollary: If Q is unitary, C*;( ) has a unique trace, and otherwise it
does not admit any KMS state for the scaling automorphism group.



Thank You!



