Furstenberg boundary of a discrete quantum group

Mehrdad Kalantar (University of Houston) joint work with P. Kasprzak, A. Skalski and R. Vergnioux

QGS: Quantum Groups Seminar

November 9, 2020

In this talk: all (quantum) groups are discrete, all C^* -algebras are unital, and all topological spaces are compact Hausdorff.

Recent applications of boundary actions in C^* -algebras:

- 1. Amenable embeddings of exact C^* -algebras
- 2. *C**-simplicity
- 3. Description & uniqueness of traces

1. Amenable embeddings of exact C^* -algebras

Recall: a C^* -algebra A is amenable if there are u.c.p. maps $\phi_i:A\to M_{n_i},\ \psi_i:M_{n_i}\to A$ such that $\|\psi_i\circ\phi_i(a)-a\|\to 0$ for all $a\in A$.

A C^* -algebra A is exact if there is $B \supset A$ and u.c.p. maps $\phi_i: A \to M_{n_i}, \ \psi_i: M_{n_i} \to B$ such that $\|\psi_i \circ \phi_i(a) - a\| \to 0$ for all $a \in A$.

Obviously: every C^* -subalgebra of an amenable C^* -algebra is exact. The converse is also true!

<u>Problem</u>: given an exact C^* -algebra A, find concrete / canonical / meaningful embeddings $A \hookrightarrow B$ where B is amenable.

1. Amenable embeddings of exact C^* -algebras

Ozawa's conjecture: given exact C^* -algebra A, \exists nuclear C^* -algebra B s.t. $A \subset B \subset I(A)$, where I(A) is the injective envelope of A, i.e. the minimal injective C^* -algebra that contains A.

Theorem (Ozawa 07): True for
$$A = C^*_{red}(\mathbb{F}_n)$$
. (with $B = \mathbb{F}_n \ltimes_r C(\partial \mathbb{F}_n)$)

Theorem (K.-Kennedy 17): True for exact
$$A = C^*_{red}(\Gamma)$$
. (with $B = \Gamma \ltimes_r C(\partial_F \Gamma)$)

(Ozawa's conjecture remains open in general.)

2. C*-simplicity

<u>Problem</u>: For which groups Γ , $C^*_{\rm red}(\Gamma)$ is simple? (equivalently, any rep weakly contained in λ is weakly equivalent to λ).

```
Theorem (Powers 75): C^*_{red}(\mathbb{F}_n) is simple. . . (many results ...)
```

Theorem (K.-Kennedy 17): $C^*_{red}(\Gamma)$ is simple iff $\Gamma \curvearrowright \partial_F \Gamma$ is free.

3. Description & uniqueness of traces

<u>Problem</u>: Describe traces on $C^*_{red}(\Gamma)$; in particular, for which groups Γ , $C^*_{red}(\Gamma)$ has a unique trace?

Theorem (Breuillard-K.-Kennedy-Ozawa 17):

Every trace on $C^*_{\mathrm{red}}(\Gamma)$ is supported on the kernel of $\Gamma \curvearrowright \partial_F \Gamma$; in particular, $C^*_{\mathrm{red}}(\Gamma)$ has a unique trace iff $\Gamma \curvearrowright \partial_F \Gamma$ is faithful.

(Furman 03): $\ker(\Gamma \curvearrowright \partial_F \Gamma)$ is the amenable radical of Γ .

<u>Goal</u>: extend the notion of boundary actions to the quantum case, apply it to similar problems for discrete quantum groups...

Furstenberg boundary: definition

Definition (Furstenberg):

An action $\Gamma \curvearrowright X$ is a boundary action if $\overline{\operatorname{co}(\Gamma \nu)}^{\operatorname{weak}^*} = \operatorname{Prob}(X)$ for every $\nu \in \operatorname{Prob}(X)$;

equivalently, the Poisson transform $\mathcal{P}_{\nu}: \mathcal{C}(X) \to \ell^{\infty}(\Gamma)$ is isometric for every $\nu \in \operatorname{Prob}(X)$, where $\mathcal{P}_{\nu}(f)(\gamma) := \int_{X} f(\gamma x) \, d\nu(x)$.

Proposition (Furstenberg):

There is a (unique) maximal Γ -boundary, which we call the Furstenberg boundary and denote by $\partial_F \Gamma$.

Theorem (K.-Kennedy 17):

 $C(\partial_F\Gamma)\cong I_\Gamma(\mathbb{C})$ as Γ - C^* -algebras, where $I_\Gamma(\mathbb{C})$ is the Γ -injective envelope of \mathbb{C} , i.e. the (unique) minimal injective object in the category of Γ - C^* -algebras (existence of which was proved by Hamana).

Actions of discrete quantum groups

Below, $\mathbb \Gamma$ is a discrete quantum group, its coproduct is denoted by $\Delta.$ We will use standard notations.

Definition: A (left) action $\mathbb{F} \curvearrowright A$ is an injective $\alpha \in \operatorname{Mor}(A, c_0(\mathbb{F}) \otimes A)$ such that

- $(id \otimes \alpha) \circ \alpha = (\Delta \otimes id) \circ \alpha$;
- $(c_0(\mathbb{F}) \otimes \mathbb{1}) \alpha(A)$ spans a dense subspace of $c_0(\mathbb{F}) \otimes A$.

In this case we say A is a Γ -C*-algebra.

The convolution actions are defined naturally ...

Actions of discrete quantum groups

Definition: Let $\alpha \in \operatorname{Mor}(A, c_0(\Gamma) \otimes A)$ be an action of Γ on A. We define the *co-kernel of* α to be the von Neumann algebra

$$N_{\alpha} := \mathrm{VN}\{\,(\mathrm{id}\otimes\nu)\,\alpha(a)\,:\, \nu\in A^*, a\in A\,\}\subset \ell^{\infty}(\Gamma)\,.$$

We say that the action α is faithful if $N_{\alpha} = \ell^{\infty}(\mathbb{\Gamma})$.

A linear map $\Phi:A\to B$ between $\mathbb{F}\text{-}C^*$ -algebras is $\mathbb{F}\text{-}\mathsf{equivariant}$ if

$$\Phi(a*\mu) = \Phi(a)*\mu$$
 $(a \in A \text{ and } \mu \in A^*).$

The (reduced) crossed product $\mathbb{\Gamma} \ltimes_r A$ is the \mathbb{C}^* -algebra generated by $(C^*_{\mathrm{red}}(\mathbb{\Gamma}) \otimes I) \alpha(A)$ inside $M(\mathcal{K}(\ell^2(\mathbb{\Gamma})) \otimes A)$.

Boundary actions of discrete quantum groups

Definition: A \mathbb{F} -C*-algebra A is a \mathbb{F} -boundary the set $\{\mu*\nu:\mu\in\ell^1(\mathbb{F})\text{ is a state}\}$ is weak* dense in the state space of A, for every state $\nu\in A^*$.

Proposition: For a \mathbb{F} -C*-algebra A the following are equivalent:

- 1. A is a Γ -boundary;
- 2. every ucp \mathbb{F} -equivariant from A into $\ell^{\infty}(\mathbb{F})$ is completely isometric;
- 3. every ucp \mathbb{F} -equivariant map from A into any \mathbb{F} -C*-algebra B is completely isometric.

The Furstenberg boundary of a discrete quantum group

Theorem: Every discrete quantum group \mathbb{F} admits a (unique) maximal \mathbb{F} -boundary $C(\partial_F \mathbb{F})$, in the sense that for any \mathbb{F} -boundary A there is a completely isometric ucp \mathbb{F} -equivariant map $A \to C(\partial_F \mathbb{F})$.

We call $C(\partial_F \mathbb{F})$ the (algebra of continuous functions on the) Furstenberg boundary of \mathbb{F} .

The Furstenberg boundary of a discrete quantum group

Quick remarks on the construction:

Similarly to Hamana's construction, we obtain a (unique) minimal injective object in the category of $\ell^1(\Gamma)$ - C^* -algebras. We need to work a bit to show that the $\ell^1(\Gamma)$ -module action on this injective envelop comes from a genuine Γ -action.

Immediate from definition:

Proposition: Γ is amenable iff $C(\partial_F \Gamma)$ is trivial.

Applications: uniqueness of trace

Proposition: Every discrete quantum group \mathbb{F} admits the largest normal amenable quantum subgroup $R(\mathbb{F})$, that we call the amenable radical of \mathbb{F} .

Proposition: If the co-kernel $N_{\rm F}$ of the action $\mathbb{F} \curvearrowright \mathcal{C}(\partial_F \mathbb{F})$ is of quotient type, then $N_{\rm F} = \ell^{\infty}(\mathbb{F}/R(\mathbb{F}))$.

Definition: A \mathbb{F} -invariant vN subalgebra $M \subset \ell^{\infty}(\mathbb{F})$ is relatively amenable if \exists ucp \mathbb{F} -equivariant map $\Psi : \ell^{\infty}(\mathbb{F}) \to M$.

Theorem: N_F is the unique minimal relatively amenable Baaj-Vaes subalgebra of $\ell^{\infty}(\mathbb{F})$. It is contained in every other relatively amenable Baaj-Vaes subalgebra of $\ell^{\infty}(\mathbb{F})$.

Applications: uniqueness of trace

Theorem: Suppose $\mathbb F$ has a faithful boundary action $\mathbb F \curvearrowright A$ (equivalently, $\mathbb F \curvearrowright \mathcal C(\partial_F \mathbb F)$ is faithful). If $\mathbb F$ is unimodular then the Haar state is the unique trace on $C^*_{\mathrm{red}}(\mathbb F)$. If $\mathbb F$ is not unimodular, then it does not admit any $\mathbb F$ -invariant functional, nor any KMS-state for the scaling automorphism group.

A partial converse:

Proposition: If Γ be is unimodular with the unique trace property then the amenable radical of Γ is trivial.

Applications: \mathbb{C}^* -simplicity

Theorem: Let $\ensuremath{\mathbb{F}}$ be a discrete quantum group. Then the following are equivalent:

- 1. $C^*_{red}(\Gamma)$ is simple;
- 2. $\mathbb{\Gamma} \ltimes_r A$ is simple for every $\mathbb{\Gamma}$ -boundary A;
- 3. $\mathbb{\Gamma} \ltimes_r A$ is simple for some $\mathbb{\Gamma}$ -boundary A;
- 4. $\mathbb{\Gamma} \ltimes_r \mathcal{C}(\partial_F \mathbb{\Gamma})$ is simple.

Proposition: If Γ is C^* -simple, then Γ has trivial amenable radical.

Amenable embeddings of exact C^* -algebras

Theorem: Let A be a \mathbb{F} - C^* -algebra. Then A is a \mathbb{F} -boundary iff

$$\mathbb{\Gamma} \ltimes_r A \subset I(C^*_{\mathrm{red}}(\mathbb{\Gamma})).$$

In particular, if $\mathbb{F} \ltimes_r A$ is amenable, then $C^*_{\mathrm{red}}(\mathbb{F})$ is exact and Ozawa's conjecture holds in this case.

How to find concrete examples?

Classically, concrete examples of boundary actions are often obtained using hyperbolic-type elements or nice boundary convergence properties. Of course such orbital behavior are not quantum-friendly!!

Theorem: Let $\mathbb F$ be a discrete quantum group and let $\mu \in \ell^1(\mathbb F)$ be a state. Suppose A is a unital $\mathbb F$ -C*-algebra that admits a unique μ -stationary state ν , and such that the map

$$A \ni a \mapsto (\mathsf{id} \otimes \nu) \alpha(a) \in \ell^{\infty}(\Gamma)$$

is completely isometric. Then A is a Γ -boundary.

Definition: A state $\omega \in A^*$ is μ -stationary if $\mu * \omega = \omega$.

A concrete example and applications

Let $\Gamma=\mathrm{FO}_Q$ be the free orthogonal discrete quantum group with $Q\in M_N(\mathbb{C})$ such that $Q\bar{Q}=\pm I_N,\ N\geq 3$.

The "Gromov boundary" \mathcal{B}_{∞} of Γ was defined by Vaes and Vergnioux, it is a unital Γ -C*-algebra that shares many properties of the (continuous functions on the) Gromov boundary of the free group.

Vaes–Vergnioux proved that \mathcal{B}_{∞} admits a state ν_{∞} such that $\pi_{\nu_{\infty}}(\mathcal{B}_{\infty})''$ is canonically identified with the Poisson boundary of \mathbb{F} .

Concrete example and applications

Theorem: The Poisson state ν_{∞} is the unique $\operatorname{qtr}_{M_N(\mathbb{C})}$ -stationary state on \mathcal{B}_{∞} .

Corollary: We have:

- 1. The Gromov boundary \mathcal{B}_{∞} is a $\overline{\Gamma}$ -boundary.
- 2. Ozawa's conjecture holds for $C^*_{\mathrm{red}}(\Gamma)$; (Vaes-Vergnioux proved that $\Gamma \ltimes_r \mathcal{B}_{\infty}$ is amenable).
- 3. The crossed product $\mathbb{F} \ltimes_r \mathcal{B}_{\infty}$ is simple, provided that $\|Q\|^8 \leq \frac{3}{8} \mathrm{Tr}(QQ^*)$; (Vaes-Vergnioux proved that $C^*_{\mathrm{red}}(\mathbb{F})$ is simple in this case).

Concrete example and applications

Theorem: The action $\Gamma \curvearrowright \mathcal{B}_{\infty}$ is faithful.

Corollary: If Q is unitary, $C^*_{red}(\mathbb{F})$ has a unique trace, and otherwise it does not admit any KMS state for the scaling automorphism group.

Thank You!