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Motivations/History/Background

In this talk: all (quantum) groups are discrete, all C∗-algebras are

unital, and all topological spaces are compact Hausdorff.

Recent applications of boundary actions in C∗-algebras:

1. Amenable embeddings of exact C∗-algebras

2. C∗-simplicity

3. Description & uniqueness of traces



Motivations/History/Background

1. Amenable embeddings of exact C∗-algebras

Recall: a C∗-algebra A is amenable if there are u.c.p. maps

φi : A→ Mni , ψi : Mni → A such that ‖ψi ◦ φi(a)− a‖ → 0 for all

a ∈ A.

A C∗-algebra A is exact if there is B ⊃ A and u.c.p. maps

φi : A→ Mni , ψi : Mni → B such that ‖ψi ◦ φi(a)− a‖ → 0 for all

a ∈ A.

Obviously: every C∗-subalgebra of an amenable C∗-algebra is exact.

The converse is also true!

Problem: given an exact C∗-algebra A, find concrete / canonical /

meaningful embeddings A ↪→ B where B is amenable.



Motivations/History/Background

1. Amenable embeddings of exact C∗-algebras

Ozawa’s conjecture: given exact C∗-algebra A, ∃ nuclear C∗-algebra B

s.t. A ⊂ B ⊂ I (A), where I (A) is the injective envelope of A, i.e. the

minimal injective C∗-algebra that contains A.

Theorem (Ozawa 07): True for A = C∗red(Fn).

(with B = Fn nr C (∂Fn))

Theorem (K.-Kennedy 17): True for exact A = C∗red(Γ).

(with B = Γ nr C (∂FΓ))

(Ozawa’s conjecture remains open in general.)



Motivations/History/Background

2. C∗-simplicity

Problem: For which groups Γ, C∗red(Γ) is simple? (equivalently, any rep

weakly contained in λ is weakly equivalent to λ).

Theorem (Powers 75): C∗red(Fn) is simple.

.

.

(many results ...)

.

.

Theorem (K.-Kennedy 17):

C∗red(Γ) is simple iff Γ y ∂FΓ is free.



Motivations/History/Background

3. Description & uniqueness of traces

Problem: Describe traces on C∗red(Γ); in particular, for which groups Γ,

C∗red(Γ) has a unique trace?

Theorem (Breuillard-K.-Kennedy-Ozawa 17):

Every trace on C∗red(Γ) is supported on the kernel of Γ y ∂FΓ; in

particular, C∗red(Γ) has a unique trace iff Γ y ∂FΓ is faithful.

(Furman 03): ker(Γ y ∂FΓ) is the amenable radical of Γ.



Motivations/History/Background

Goal: extend the notion of boundary actions to the quantum case,

apply it to similar problems for discrete quantum groups...



Furstenberg boundary: definition

Definition (Furstenberg):

An action Γ y X is a boundary action if co(Γν)
weak∗

= Prob(X ) for

every ν ∈ Prob(X );

equivalently, the Poisson transform Pν : C (X )→ `∞(Γ) is isometric for

every ν ∈ Prob(X ), where Pν(f )(γ) :=
∫
X
f (γx) dν(x).

Proposition (Furstenberg):

There is a (unique) maximal Γ-boundary, which we call the Furstenberg

boundary and denote by ∂FΓ.

Theorem (K.-Kennedy 17):

C (∂FΓ) ∼= IΓ(C) as Γ-C∗-algebras, where IΓ(C) is the Γ-injective

envelope of C, i.e. the (unique) minimal injective object in the

category of Γ-C∗-algebras (existence of which was proved by Hamana).



Actions of discrete quantum groups

Below, � is a discrete quantum group, its coproduct is denoted by ∆.

We will use standard notations.

Definition: A (left) action � y A is an injective α ∈ Mor(A, c0(�)⊗A)

such that

• (id⊗α) ◦ α = (∆⊗ id) ◦ α;

• (c0(�)⊗ 1)α(A) spans a dense subspace of c0(�)⊗ A.

In this case we say A is a �-C*-algebra.

The convolution actions are defined naturally ...



Actions of discrete quantum groups

Definition: Let α ∈ Mor(A, c0(�)⊗ A) be an action of � on A. We

define the co-kernel of α to be the von Neumann algebra

Nα := VN{ (id⊗ν)α(a) : ν ∈ A∗, a ∈ A } ⊂ `∞(�) .

We say that the action α is faithful if Nα = `∞(�).

A linear map Φ : A→ B between �-C∗-algebras is �-equivariant if

Φ(a ∗ µ) = Φ(a) ∗ µ (a ∈ A and µ ∈ A∗).

The (reduced) crossed product �nr A is the C∗-algebra generated by

(C∗red(�)⊗ I )α(A) inside M(K(`2(�))⊗ A).



Boundary actions of discrete quantum groups

Definition: A �-C*-algebra A is a �-boundary the set

{µ ∗ ν : µ ∈ `1(�) is a state} is weak* dense in the state space of A,

for every state ν ∈ A∗.

Proposition: For a �-C*-algebra A the following are equivalent:

1. A is a �-boundary;

2. every ucp �-equivariant from A into `∞(�) is completely

isometric;

3. every ucp �-equivariant map from A into any �-C*-algebra B is

completely isometric.



The Furstenberg boundary of a discrete quantum group

Theorem: Every discrete quantum group � admits a (unique) maximal

�-boundary C (∂F�), in the sense that for any �-boundary A there is a

completely isometric ucp �-equivariant map A→ C (∂F�).

We call C (∂F�) the (algebra of continuous functions on the)

Furstenberg boundary of �.



The Furstenberg boundary of a discrete quantum group

Quick remarks on the construction:

Similarly to Hamana’s construction, we obtain a (unique) minimal

injective object in the category of `1(�)-C∗-algebras. We need to work

a bit to show that the `1(�)-module action on this injective envelop

comes from a genuine �-action.

Immediate from definition:

Proposition: � is amenable iff C (∂F�) is trivial.



Applications: uniqueness of trace

Proposition: Every discrete quantum group � admits the largest normal

amenable quantum subgroup R(�), that we call the amenable radical

of �.

Proposition: If the co-kernel NF of the action � y C (∂F�) is of

quotient type, then NF = `∞(�/R(�)).

Definition: A �-invariant vN subalgebra M ⊂ `∞(�) is

relatively amenable if ∃ ucp �-equivariant map Ψ : `∞(�)→ M.

Theorem: NF is the unique minimal relatively amenable Baaj-Vaes

subalgebra of `∞(�). It is contained in every other relatively amenable

Baaj-Vaes subalgebra of `∞(�).



Applications: uniqueness of trace

Theorem: Suppose � has a faithful boundary action � y A

(equivalently, � y C (∂F�) is faithful). If � is unimodular then the

Haar state is the unique trace on C∗red(�). If � is not unimodular, then

it does not admit any �-invariant functional, nor any KMS-state for

the scaling automorphism group.

A partial converse:

Proposition: If � be is unimodular with the unique trace property then

the amenable radical of � is trivial.



Applications: C∗-simplicity

Theorem: Let � be a discrete quantum group. Then the following are

equivalent:

1. C∗red(�) is simple;

2. �nr A is simple for every �-boundary A;

3. �nr A is simple for some �-boundary A;

4. �nr C (∂F�) is simple.

Proposition: If � is C∗-simple, then � has trivial amenable radical.



Amenable embeddings of exact C∗-algebras

Theorem: Let A be a �-C∗-algebra. Then A is a �-boundary iff

�nr A ⊂ I (C∗red(�)).

In particular, if �nr A is amenable, then C∗red(�) is exact and Ozawa’s

conjecture holds in this case.



How to find concrete examples?

Classically, concrete examples of boundary actions are often obtained

using hyperbolic-type elements or nice boundary convergence

properties. Of course such orbital behavior are not quantum-friendly!!

Theorem: Let � be a discrete quantum group and let µ ∈ `1(�) be a

state. Suppose A is a unital �-C*-algebra that admits a unique

µ-stationary state ν, and such that the map

A 3 a 7→ (id⊗ν)α(a) ∈ `∞(�)

is completely isometric. Then A is a �-boundary.

Definition: A state ω ∈ A∗ is µ-stationary if µ ∗ ω = ω.



A concrete example and applications

Let � = FOQ be the free orthogonal discrete quantum group with

Q ∈ MN(C) such that QQ̄ = ±IN , N ≥ 3.

The “Gromov boundary”B∞ of � was defined by Vaes and Vergnioux,

it is a unital �-C*-algebra that shares many properties of the

(continuous functions on the) Gromov boundary of the free group.

Vaes–Vergnioux proved that B∞ admits a state ν∞ such that

πν∞(B∞)′′ is canonically identified with the Poisson boundary of �.



Concrete example and applications

Theorem: The Poisson state ν∞ is the unique qtrMN (C)-stationary state

on B∞.

Corollary: We have:

1. The Gromov boundary B∞ is a �-boundary.

2. Ozawa’s conjecture holds for C∗red(�); (Vaes-Vergnioux proved

that �nr B∞ is amenable).

3. The crossed product �nr B∞ is simple, provided that

‖Q‖8 ≤ 3
8 Tr(QQ∗); (Vaes-Vergnioux proved that C∗red(�) is

simple in this case).



Concrete example and applications

Theorem: The action � y B∞ is faithful.

Corollary: If Q is unitary, C∗red(�) has a unique trace, and otherwise it

does not admit any KMS state for the scaling automorphism group.



Thank You!


